Characterization of pFGE , the Paralog of the C - Formylglycine - generating Enzyme
نویسندگان
چکیده
pFGE is the paralog of the formylglycine-generating enzyme (FGE), which catalyzes the oxidation of a specific cysteine to C -formylglycine, the catalytic residue in the active site of sulfatases. The enzymatic activity of sulfatases depends on this posttranslational modification, and the genetic defect of FGE causes multiple sulfatase deficiency. The structural and functional properties of pFGE were analyzed. The comparison with FGE demonstrates that both share a tissue-specific expression pattern and the localization in the lumen of the endoplasmic reticulum. Both are retained in the endoplasmic reticulum by a saturable mechanism. Limited proteolytic cleavage at similar sites indicates that both also share a similar threedimensional structure. pFGE, however, is lacking the formylglycine-generating activity of FGE. Although overexpression of FGE stimulates the generation of catalytically active sulfatases, overexpression of pFGE has an inhibitory effect. In vitro pFGE interacts with sulfatasederived peptides but not with FGE. The inhibitory effect of pFGE on the generation of active sulfatases may therefore be caused by a competition of pFGE and FGE for newly synthesized sulfatase polypeptides.
منابع مشابه
Crystal structure of human pFGE, the paralog of the Calpha-formylglycine-generating enzyme.
In eukaryotes, sulfate esters are degraded by sulfatases, which possess a unique Calpha-formylglycine residue in their active site. The defect in post-translational formation of the Calpha-formylglycine residue causes a severe lysosomal storage disorder in humans. Recently, FGE (formylglycine-generating enzyme) has been identified as the protein required for this specific modification. Using se...
متن کاملMultiple Sulfatase Deficiency Is Caused by Mutations in the Gene Encoding the Human Cα-Formylglycine Generating Enzyme
C(alpha)-formylglycine (FGly) is the catalytic residue in the active site of eukaryotic sulfatases. It is posttranslationally generated from a cysteine in the endoplasmic reticulum. The genetic defect of FGly formation causes multiple sulfatase deficiency (MSD), a lysosomal storage disorder. We purified the FGly generating enzyme (FGE) and identified its gene and nine mutations in seven MSD pat...
متن کاملCopper is a Cofactor of the Formylglycine‐Generating Enzyme
Formylglycine-generating enzyme (FGE) is an O2 -utilizing oxidase that converts specific cysteine residues of client proteins to formylglycine. We show that CuI is an integral cofactor of this enzyme and binds with high affinity (KD =of 10-17 m) to a pair of active-site cysteines. These findings establish FGE as a novel type of copper enzyme.
متن کاملFunction and Structure of a Prokaryotic Formylglycine-generating Enzyme*S⃞
Type I sulfatases require an unusual co- or post-translational modification for their activity in hydrolyzing sulfate esters. In eukaryotic sulfatases, an active site cysteine residue is oxidized to the aldehyde-containing C(alpha)-formylglycine residue by the formylglycine-generating enzyme (FGE). The machinery responsible for sulfatase activation is poorly understood in prokaryotes. Here we d...
متن کاملSite-Specific, Covalent Immobilization of Dehalogenase ST2570 Catalyzed by Formylglycine-Generating Enzymes and Its Application in Batch and Semi-Continuous Flow Reactors.
Formylglycine-generating enzymes can selectively recognize and oxidize cysteine residues within the sulfatase sub motif at the terminus of proteins to form aldehyde-bearing formylglycine (FGly) residues, and are normally used in protein labeling. In this study, an aldehyde tag was introduced to proteins using formylglycine-generating enzymes encoded by a reconstructed set of the pET28a plasmid ...
متن کامل